Laser Ablation – Accelerator Mass Spectrometry: rapid and spatially resolved radiocarbon analyses of carbonate archives

*Caroline Welte1,2, Lukas Wacker1, Bodo Hattendorf2, Marcus Christl1, Joachim Koch2, Christiane Yeman1, Jens Fohlmeister3, Sebastian F.M. Breitenbach4, Allen H. Andrews5, Laura F. Robinson6, Jesse R. Farmer7, Detlef Günther2, Hans-Arno Synal1

1Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
2Laboratory of Inorganic Chemistry, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
3Institute of Environmental Physics, U. of Heidelberg, INF 229, 69120 Heidelberg, Germany
4Institute of Geology, Mineralogy & Geophysics, Ruhr-U. Bochum, 44780 Bochum, Germany
5NOAA Fisheries, Pacific Islands Fisheries Science Center, 845 Wasp Blvd, Honolulu, HI 96818, USA
6School of Earth Sciences, University of Bristol, Queens Road, Clifton Bristol, BS8 1RJ, United Kingdom
7Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA

*Contact email: cwelte@phys.ethz.ch

Spatially resolved radiocarbon (14C) profiles in carbonate archives (e.g. corals, speleothems, shells) are difficult to accomplish due to tedious multi-step sample preparation required for conventional 14C measurements, employing accelerator mass spectrometry (AMS). Furthermore, producing a highly resolved 14C record implies processing a large number of subsamples, which is very time consuming.

A novel setup [1, 2, 3] has been developed at ETH Zurich that combines high spatial resolution of laser ablation (LA) with the sensitivity of AMS, enabling rapid in-situ determination of 14C in carbonate samples. An ArF-excimer laser beam ($\lambda = 193$ nm) is focused on the carbonate sample, generating CO$_2$ that is directly introduced into the AMS gas ion source. Pressed carbonate powder reference materials (IAEA C2, CSTD, in-house standards) and marble have been used to investigate the analytical behavior of the new LA-AMS system including sensitivity, accuracy, background and cross-contamination. Best measurement conditions were reached using a carbon flow into the ion source of about 3 μg/min, resulting in negative ion currents up to 20 μA, a detection limit of about 1% of the modern 14C concentration, and a reproducibility of reference materials within counting statistics. Different sampling strategies are compared using a stalagmite sample comprising the 14C bomb pulse. The applicability of the setup for other materials such as corals and shells is demonstrated.

The continuous sampling of the LA-AMS setup offers great flexibility with regard to analysis time, spatial resolution and measurement precision: several cm per hour can be scanned, providing rapid overview screening of the 14C abundance in a sample. A resolution of 100 μm and measurement precision of 1% is achievable for modern samples. A detailed overview of the todays’ performance of the setup will be given and implications on new possible applications will be reviewed.